Every convex free basic semi-algebraic set has an LMI representation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Every Convex Free Basic Semi-algebraic Set Has an Lmi Representation

The (matricial) solution set of a Linear Matrix Inequality (LMI) is a convex non-commutative basic open semi-algebraic set (defined below). The main theorem of this paper is a converse, a result which has implications for both semidefinite programming and systems engineering. A non-commutative basic open semi-algebraic set is defined in terms of a non-commutative `×`-matrix polynomial p(x1 · · ...

متن کامل

Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra

A technique for generating invariant polynomial inequalities of bounded degree is presented using the abstract interpretation framework. It is based on overapproximating basic semi-algebraic sets, i.e., sets defined by conjunctions of polynomial inequalities, by means of convex polyhedra. While improving on the existing methods for generating invariant polynomial equalities, since polynomial in...

متن کامل

Algebraic boundaries of convex semi-algebraic sets

We study the algebraic boundary of a convex semi-algebraic set via duality in convex and algebraic geometry. We generalise the correspondence of facets of a polytope with the vertices of the dual polytope to general semi-algebraic convex sets. In this case, exceptional families of extreme points might exist and we characterise them semi-algebraically. We also give a strategy for computing a com...

متن کامل

Every rayless graph has an unfriendly partition

We prove that every rayless graph has an unfriendly partition.

متن کامل

Computing Integral Points in Convex Semi-algebraic Sets

Let Y be a convex set in IR k deened by polynomial inequalities and equations of degree at most d 2 with integer coeecients of binary length l. We show that if Y \ ZZ k 6 = ;, then Y contains an integral point of binary length ld O(k 4). For xed k, our bound implies a polynomial-time algorithm for computing an integral point y 2 Y. In particular, we extend Lenstra's theorem on the polynomial-ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Mathematics

سال: 2012

ISSN: 0003-486X

DOI: 10.4007/annals.2012.176.2.6